Synthesis and Reactivity of Binuclear Perhalogenophenyl Derivatives of Platinum(1). Molecular Structure of $\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot 0.4 \mathrm{CHCl}_{3}{ }^{*}$

Rafael Usón, Juan Forniés, Pablo Espinet, Consuelo Fortuño, and Milagros Tomás
Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
Alan J. Welch
Department of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ

Abstract

Binuclear complexes of platinum(1) $\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2} \mathrm{~L}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(\mathrm{X}=\mathrm{F}, \mathrm{L}=\mathrm{CO}, p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NC}, \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NC}\right.$, or $\mathrm{Bu}^{\top} \mathrm{NC} ; \mathrm{X}=\mathrm{Cl}, \mathrm{L}=\mathrm{CO}$ or $p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NC}$) have been prepared by a redox condensation reaction between cis- $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2} \mathrm{~L}_{2}\right]$ and $\left[\mathrm{Pt}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$. The reactivity of these binuclear complexes towards phosphines, isocyanides, Mel , and I_{2} has been studied. The structure of $\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})_{2}-\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]$ has been determined by single-crystal X-ray diffraction; space group $C_{2} / c, a=18.272(4)$, $b=16.006(3), c=17.787(5) \AA, \beta=101.046(19)^{\circ}, Z=4, R=0.0378$ for 3449 unique reflections bond [2.599(1) Å].

Most platinum(I) derivatives are binuclear complexes with metal-to-metal bonds supported by other bridging ligands such as $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2},{ }^{1} \quad \mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{AsPh}_{2},{ }^{2} \quad \mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{AsPh}_{2},{ }^{3}$ $o-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\left(\mathrm{PPh}_{2}\right){ }^{4} \mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{NEt}_{2},{ }^{5}$ allyl or cyclopentadienyl, ${ }^{6}$ $\mathrm{CO}{ }^{7,8} \mathrm{~S}$ or Se^{9-14} and complexes, mainly $\mathrm{CO}^{15,16}$ or isocyanide ${ }^{17}$ derivatives, containing a $\mathrm{Pt}-\mathrm{Pt}$ bond unsupported by bridging ligands have been described only rarely. Much attention has been paid to the structures and reactivity of these complexes. Their reactivity is strongly dependent on the type of complex.
This paper deals with the synthesis of some binuclear pentafluoro- or pentachloro-phenyl platinum(I) derivatives containing $\mathrm{Pt}-\mathrm{Pt}$ bonds unsupported by any bridging ligand $\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2} \mathrm{~L}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathrm{X}=\mathrm{F}$ or $\mathrm{Cl} ; \mathrm{L}=\mathrm{CO}$ or CNR$)$ and the study of their reactivity towards $\mathrm{PR}_{3}, \mathrm{CNR}, \mathrm{MeI}$, and I_{2}. The molecular structure of $\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ has been established by a single-crystal X-ray study.
Recently ${ }^{18} \quad\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mathrm{CO})_{2}\left(\mathrm{PBu}_{2}{ }_{2} \mathrm{Ph}\right)_{2}\right]$ was prepared by treating $\left[\mathrm{Pt}_{3}(\mathrm{CO})_{3}\left(\mathrm{PBu}_{2}{ }_{2} \mathrm{Ph}\right)_{3}\right]$ either with HCl at $-50^{\circ} \mathrm{C}$ or with Cl_{2} and its molecular structure has been established.

Results and Discussion

The synthesis of the binuclear perhalogenophenyl platinum (i) derivatives has been carried out by a redox condensation reaction between cis- $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2} \mathrm{~L}_{2}\right]$ and $\left[\mathrm{Pt}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ in oxygen-free tetrahydrofuran (thf) solutions at reflux temperature [equation (1); $\mathrm{X}=\mathrm{F}, \mathrm{L}=\mathrm{CO}$ (1), $p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NC}$ (2), $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NC}$ (3), or $\mathrm{Bu}^{t} \mathrm{NC}$ (4); $\mathrm{X}=\mathrm{Cl}, \mathrm{L}=\mathrm{CO}$ (5) or p $\left.\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NC}(6)\right]$.

$$
\begin{align*}
& c i s-\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2} \mathrm{~L}_{2}\right]+ {\left[\mathrm{Pt}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \longrightarrow } \\
& {\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2} \mathrm{~L}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]+\mathrm{C}_{2} \mathrm{H}_{4} } \tag{1}
\end{align*}
$$

However this process is not a general one since when $\mathrm{X}=\mathrm{F}$, $\mathrm{L}=\mathrm{PPh}_{3}$ or $\mathrm{OC}_{4} \mathrm{H}_{8}$ and $\mathrm{X}=\mathrm{Cl}, \mathrm{L}=\mathrm{PPh}_{3}, \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NC}$, or $\mathrm{Bu}^{1} \mathrm{NC}$ no reaction takes place even by refluxing the corresponding solutions for 1 h . Moreover, if longer reaction times are used partial decomposition occurs and most of the platinum(II) starting material is recovered.

Analytical results and molecular weights in CHCl_{3} for complexes (1)-(6) are collected in Table 1. The i.r. spectra of these complexes show typical absorptions due to the $\mathrm{C}_{6} \mathrm{~F}_{5}{ }^{19}$ or
$\mathrm{C}_{6} \mathrm{Cl}_{5}{ }^{20}$ groups. The pentafluorophenyl derivatives show an absorption near $950 \mathrm{~cm}^{-1}$ (see Table 1) which is shifted to lower wavelengths relative to the platinum(II) starting materials (see Table 1), in accordance with previous observations for other pentafluorophenyl complexes of Pd^{I} or $\mathrm{Pt}^{\mathrm{t}}{ }^{21,22}$ Absorptions due to $v(\mathrm{C} \equiv \mathrm{O})$ or $v(\mathrm{C} \equiv \mathrm{N})$ in the $2200-2000 \mathrm{~cm}^{-1}$ region appear at lower wavelengths than for the corresponding platinum(II) starting materials as for other platinum(I) derivatives. ${ }^{22,23}$ No absorptions in the $1850-1600 \mathrm{~cm}^{-1}$ region are observed so that the presence of bridging CO or CNR can be ruled out.

Structure of $\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](1)$.-The structure of complex (1) has been determined by single-crystal X-ray diffraction (see Experimental section). Single crystals were grown by slow diffusion ($c a .10 \mathrm{~d}$) of n-hexane into a CHCl_{3} solution of the complex at $-30^{\circ} \mathrm{C}$ so that $\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}-\right.$ $\left.(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot 0.4 \mathrm{CHCl}_{3}$ was obtained. Positional parameters and selected bond distances and angles are given in Tables 2 and 3 respectively. The molecular structure is shown in Figure 1 and consists of two $\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)$ fragments fused by a direct $\mathrm{Pt}-\mathrm{Pt}^{\prime}$ bond unsupported by any bridging ligand. The molecule has crystallographically required C_{2} symmetry, the two-fold axis bisecting the $\mathrm{Pt}-\mathrm{Pt}$ bond.
The $\mathrm{Pt}-\mathrm{Pt}^{\prime}$ distance is 2.599 (1) \AA, similar to that found in $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}\right]^{2-}[2.584(2) \AA]$ and shorter than that in $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mathrm{CO})_{2}\left(\mathrm{PBu}_{2}{ }_{2} \mathrm{Ph}\right)_{2}\right][2.628(1) \AA]^{18}$ or in other bridged binuclear platinum(I) complexes $\left[\mathrm{Pt}_{2} \mathrm{X}_{2}(\mu-\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathrm{X}=$ $\left.\mathrm{Cl}, 2.634(3) \AA \AA^{8} \mathrm{Br}, 2.654(1) \AA\right]^{7}$ and $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{dppm})_{2}\right]$ (2.651(1) \AA]. ${ }^{24}$

The environment around each platinum atom is almost square planar with both PPh_{3} ligands in positions trans to the $\mathrm{Pt}-\mathrm{Pt}^{\prime}$ bond, so that the $\mathbf{P}-\mathrm{Pt}_{\mathbf{t}}-\mathrm{Pt}^{\prime}-\mathbf{P}^{\prime}$ system is nearly linear. The $\mathrm{P}-\mathrm{Pt}^{\prime}-\mathrm{Pt}^{\prime}$ angle is $174.1(1)^{\circ}$. The corresponding angles $\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{Pt}(2)$ and $\mathrm{Pt}(1)-\mathrm{Pt}(2)-\mathrm{Cl}(2)$ in $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}\right]^{2-}$ are 177.1(2) and $173.7(2)^{\circ}$ respectively. ${ }^{25}$ The distance $\mathrm{Pt}-\mathrm{P}$ is $2.313(2) \AA$ similar to other $\mathrm{Pt}-\mathrm{P}$ lengths trans to a $\mathrm{Pt}-\mathrm{Pt}$

[^0]Table 1. Analytical results, molecular weights, and relevant i.r. absorptions (in parenthesis absorptions due to the $\mathrm{Pt}(\mathrm{II})$ starting materials)

	Analysis ${ }^{\circ} \%$				I.r. bands $\left(\mathrm{cm}^{-1}\right)^{\text {b }}$	
Complex	C	H	N	M^{a}	$\sqrt{\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)}$	$\underbrace{}_{v(\mathrm{C} \equiv \mathrm{O}), v(\mathrm{C} \equiv \mathrm{~N})}$
(1) $\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot \mathrm{C}_{6} \mathrm{H}_{6}{ }^{\text {c }}$	$\begin{gathered} 48.70 \\ (48.65) \end{gathered}$	$\begin{gathered} 2.70 \\ (2.60) \end{gathered}$		$\begin{gathered} 1480 \\ (1304) \end{gathered}$	$\begin{gathered} 951 \\ (961) \end{gathered}$	$\begin{gathered} 2054,2036 \\ (2174,2143) \end{gathered}$
(2) $\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mathrm{CNC}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$	$\begin{gathered} 51.55 \\ (51.85) \end{gathered}$	$\begin{gathered} 3.15 \\ (3.00) \end{gathered}$	$\begin{gathered} 1.85 \\ (1.90) \end{gathered}$	$\begin{aligned} & 1612 \\ & (1483) \end{aligned}$	$\begin{gathered} 948 \\ (956) \end{gathered}$	$\begin{aligned} & 2122 \mathrm{br} \\ & (2216,2186) \end{aligned}$
(3) $\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$	$\begin{gathered} 51.00 \\ (50.75) \end{gathered}$	$\begin{array}{r} 3.50 \\ (3.55) \end{array}$	$\begin{aligned} & 1.85 \\ & (1.90) \end{aligned}$	$\begin{aligned} & 1475 \\ & (1467) \end{aligned}$	$\begin{gathered} 950 \\ (958) \end{gathered}$	$\begin{gathered} 2166,2151 \\ (2239,2216) \end{gathered}$
(4) $\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mathrm{CNBu}^{\prime}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$	$\begin{gathered} 49.35 \\ (49.25) \end{gathered}$	$\begin{gathered} 3.35 \\ (3.40) \end{gathered}$	$\begin{gathered} 1.85 \\ (2.00) \end{gathered}$	$\begin{gathered} d \\ (1415) \end{gathered}$	$\begin{gathered} 948 \\ (958) \end{gathered}$	$\begin{aligned} & 2171 \mathrm{br} \\ & (2236,2215) \end{aligned}$
(5) $\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$	$\begin{gathered} 41.00 \\ (40.85) \end{gathered}$	$\begin{gathered} 2.15 \\ (2.05) \end{gathered}$		$\begin{aligned} & 1562 \\ & (1469) \end{aligned}$		$\begin{gathered} 2054,2032 \\ (2160,2126) \end{gathered}$
(6) $\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}\left(\mathrm{CNC}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$	$\begin{gathered} 46.35 \\ (46.65) \end{gathered}$	$\begin{gathered} 2.65 \\ (2.70) \end{gathered}$	$\begin{gathered} 1.80 \\ (1.70) \end{gathered}$	$\begin{gathered} 1706 \\ (1647) \end{gathered}$		$\begin{gathered} 2144,2122 \\ (2206,2180) \end{gathered}$
(7) $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{I}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]$	$\begin{gathered} 38.35 \\ (38.55) \end{gathered}$	$\begin{gathered} 1.90 \\ (1.95) \end{gathered}$		$\begin{gathered} 793 \\ (779) \end{gathered}$	960	2111
(8) $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{I}\left(\mathrm{CNC}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)\left(\mathrm{PPh}_{3}\right)\right]$	$\begin{gathered} 44.30 \\ (44.25) \end{gathered}$	$\begin{gathered} 2.60 \\ (2.55) \end{gathered}$	$\begin{gathered} 1.90 \\ (1.60) \end{gathered}$	$\begin{gathered} 923 \\ (862) \end{gathered}$	957	2195
(9) $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right) \mathrm{I}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]$	$\begin{gathered} 34.95 \\ (34.85) \end{gathered}$	$\begin{gathered} 1.85 \\ (1.75) \end{gathered}$		$\begin{gathered} 881 \\ (793) \end{gathered}$		$\begin{aligned} & 2095(2 \text { 101sh }) \\ & 2099^{\text {e }} \end{aligned}$
(10) $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right) \mathrm{I}\left(\mathrm{CNC}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)\left(\mathrm{PPh}_{3}\right)\right]$	$\begin{gathered} 40.40 \\ (40.40) \end{gathered}$	$\begin{gathered} 2.35 \\ (2.35) \end{gathered}$	$\begin{gathered} 1.45 \\ (1.45) \end{gathered}$	$\begin{gathered} 1010 \\ (951) \end{gathered}$		2190

${ }^{a}$ Calculated values in parentheses. ${ }^{b}$ Values in parentheses are due to the platinum(ii) starting materials. ${ }^{c}$ Benzene can be eliminated by heating the sample at $80^{\circ} \mathrm{C}$ for $6 \mathrm{~h} .{ }^{d}$ Not soluble enough for molecular weight determination. ${ }^{e}$ In $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution.

Table 2. Fractional atomic co-ordinates $\left(\times 10^{4}\right)$ with standard deviations in parentheses for $\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$

Atom		$=$	
Pt	$683(1)$	$369(1)$	$2389(1)$
P	$1916(1)$	$247(1)$	$2296(1)$
$\mathrm{F}(2)$	$970(3)$	$-1575(3)$	$2596(3)$
$\mathrm{F}(3)$	$571(3)$	$-2901(3)$	$171(3)$
$\mathrm{F}(4)$	$-316(3)$	$-2707(4)$	$314(3)$
$\mathrm{F}(5)$	$-798(3)$	$-1149(4)$	$-174(3)$
$\mathrm{F}(6)$	$-379(3)$	$181(3)$	$700(3)$
$\mathrm{C}(1)$	$332(4)$	$-627(5)$	$1685(4)$
$\mathrm{C}(2)$	$551(4)$	$-1436(5)$	$1909(5)$
$\mathrm{C}(3)$	$339(5)$	$-2136(6)$	$1441(6)$
$\mathrm{C}(4)$	$-108(5)$	$-2038(5)$	$758(6)$
$\mathrm{C}(5)$	$-340(5)$	$-1247(6)$	$508(5)$
$\mathrm{C}(6)$	$-120(5)$	$-580(5)$	$984(5)$
$\mathrm{C}(7)$	$837(4)$	$1251(6)$	$3105(5)$
O	$927(4)$	$1761(4)$	$3548(4)$
$\mathrm{C}(8)$	$2299(3)$	$1067(3)$	$1772(3)$
$\mathrm{C}(9)$	$1873(3)$	$1768(3)$	$1510(3)$
$\mathrm{C}(10)$	$2176(3)$	$2402(3)$	$1128(3)$
$\mathrm{C}(11)$	$2907(3)$	$2336(3)$	$1008(3)$
$\mathrm{C}(12)$	$3333(3)$	$1634(3)$	$1270(3)$
$\mathrm{C}(13)$	$3029(3)$	$1000(3)$	$1652(3)$
$\mathrm{C}(14)$	$2486(3)$	$192(4)$	$3227(2)$
$\mathrm{C}(15)$	$3113(3)$	$688(4)$	$3475(2)$
$\mathrm{C}(16)$	$3484(3)$	$651(4)$	$4236(2)$
$\mathrm{C}(17)$	$3228(3)$	$118(4)$	$4750(2)$
$\mathrm{C}(18)$	$2600(3)$	$-378(4)$	$4502(2)$
$\mathrm{C}(19)$	$2229(3)$	$-341(4)$	$3741(2)$
$\mathrm{C}(20)$	$2140(3)$	$-666(3)$	$1753(3)$
$\mathrm{C}(21)$	$2521(3)$	$-1351(3)$	$2124(3)$
$\mathrm{C}(22)$	$2602(3)$	$-2077(3)$	$1713(3)$
$\mathrm{C}(23)$	$2303(3)$	$-2117(3)$	$931(3)$
$\mathrm{C}(24)$	$1922(3)$	$-1431(3)$	$560(3)$
$\mathrm{C}(25)$	$1841(3)$	$-706(3)$	$971(3)$
$\mathrm{Cl}(1)$	$5829(18)$	$-1367(21)$	$3922(19)$
$\mathrm{Cl}(2)$	$5034(20)$	$80(23)$	$3309(20)$
$\mathrm{Cl}(3)$	$4420(19)$	$-1335(21)$	$3456(19)$

bond. ${ }^{26-28}$ The pentafluorophenyl and the CO ligands bonded to the same platinum atom are in trans positions. The $\mathrm{Pt}-\mathrm{CO}$

Figure 1. Molecular structure of $\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ showing the atom-labelling scheme. Phenyl rings of PPh_{3} have been omitted for clarity
[$\mathrm{Pt}-\mathrm{C}(7)]$ distance is $1.887(9) \AA$ and the $\mathrm{Pt}-\mathrm{C}_{6} \mathrm{~F}_{5}[\mathrm{Pt}-\mathrm{C}(1)]$ distance is $2.053(8) \AA$, the latter being similar to those found in other pentafluorophenylplatinum derivatives. ${ }^{29-31}$ The mean planes of the ligands around each Pt atom are rotated so that the angle between the two planes is $78.6(2)^{\circ}$. A similar situation is observed in other complexes of Pd^{1} or Pt^{1}, i.e. $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{4}-\right.$ $\left.(\mathrm{CO})_{2}\right]^{2-},{ }^{25}\left[\mathrm{Pd}_{2} \mathrm{I}_{2}(\mathrm{CNMe})\right]_{4},{ }^{32}$ and $\left[\mathrm{Pd}_{2}(\mathrm{CNMe})_{6}\right]^{2+},{ }^{33,34}$ whose angles are $60,85.3$, and 86.4° respectively. Finally it is observed that the carbonyl or the pentafluorophenyl groups take up the cisoid sites on the adjacent metal atom. The corresponding torsion angles $\mathrm{C}(7)-\mathrm{Pt}-\mathrm{Pt}^{\prime} \sim \mathrm{C}^{\prime}(7)$ and $\mathrm{C}(1)-\mathrm{Pt}-$ $\mathrm{Pt}^{\prime}-\mathrm{C}^{\prime}(1)$ are 82.7(4) and $77.3(3)^{\circ}$ respectively.
N.M.R. Spectra.-The ${ }^{31}$ P n.m.r. spectra of complexes (1)-

Table 3. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ in $\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2^{-}}{ }^{-}\right.$ $(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$

$\mathrm{Pt}^{\prime}-\mathrm{Pt}^{\prime}$	$2.599(1)$	$\mathrm{P}-\mathrm{Pt}$	$2.313(2)$
$\mathrm{C}(1)-\mathrm{Pt}$	$2.053(8)$	$\mathrm{C}(7)-\mathrm{Pt}$	$1.887(9)$
$\mathrm{C}(8)-\mathrm{P}$	$1.796(4)$	$\mathrm{C}(14)-\mathrm{P}$	$1.821(5)$
$\mathrm{C}(20)-\mathrm{P}$	$1.813(4)$	$\mathrm{C}(3)-\mathrm{F}(3)$	$1.355(10)$
$\mathrm{C}(2)-\mathrm{F}(2)$	$1.331(10)$	$\mathrm{C}(5)-\mathrm{F}(5)$	$1.344(10)$
$\mathrm{C}(4)-\mathrm{F}(4)$	$1.341(9)$	$\mathrm{C}(2)-\mathrm{C}(1)$	$1.391(11)$
$\mathrm{C}(6)-\mathrm{F}(6)$	$1.367(10)$	$\mathrm{C}(3)-\mathrm{C}(2)$	$1.405(12)$
$\mathrm{C}(6)-\mathrm{C}(1)$	$1.360(11)$	$\mathrm{C}(5)-\mathrm{C}(4)$	$1.382(13)$
$\mathrm{C}(4)-\mathrm{C}(3)$	$1.336(13)$	$\mathrm{O}-\mathrm{C}(7)$	$1.123(10)$
$\mathrm{C}(6)-\mathrm{C}(5)$	$1.373(12)$		
$\mathrm{P} t^{\prime}-\mathrm{Pt}-\mathrm{P}$	$174.1(1)$	$\mathrm{Pt} t^{\prime}-\mathrm{Pt}-\mathrm{C}(1)$	$84.1(2)$
$\mathrm{P} t^{\prime}-\mathrm{P} t-\mathrm{C}(7)$	$85.5(3)$	$\mathrm{C}(7)-\mathrm{Pt}-\mathrm{P}$	$95.9(2)$
$\mathrm{C}(1)-\mathrm{Pt}-\mathrm{P}$	$94.2(2)$	$\mathrm{C}(8)-\mathrm{P}-\mathrm{Pt}$	$117.5(2)$
$\mathrm{C}(7)-\mathrm{Pt}-\mathrm{C}(1)$	$169.2(3)$	$\mathrm{C}(14)-\mathrm{P}-\mathrm{C}(8)$	$106.8(3)$
$\mathrm{C}(14)-\mathrm{P}-\mathrm{P} t$	$108.1(2)$	$\mathrm{O}-\mathrm{C}(7)-\mathrm{Pt}$	$178.0(8)$
$\mathrm{C}(20)-\mathrm{P}-\mathrm{Pt}$	$115.7(2)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{Pt}$	$125.4(6)$
$\mathrm{C}(20)-\mathrm{P}-\mathrm{C}(8)$	$101.1(3)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{F}(2)$	$120.1(7)$
$\mathrm{C}(20)-\mathrm{P}-\mathrm{C}(14)$	$106.9(3)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	$113.9(8)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Pt}$	$120.7(6)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$122.7(8)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{F}(2)$	$117.2(7)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{F}(3)$	$121.5(8)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{F}(3)$	$118.6(8)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{F}(4)$	$119.9(9)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$119.8(8)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	$119.7(8)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{F}(4)$	$120.5(9)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{F}(5)$	$121.6(9)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{F}(5)$	$119.8(8)$	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{F}(6)$	$119.6(7)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$118.6(8)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$125.2(8)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{F}(6)$	$115.2(8)$	$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{P}$	$116.1(2)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{P}$	$120.5(2)$	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{P}$	$122.3(2)$
$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{P}$	$119.5(2)$	$\mathrm{C}(25)-\mathrm{C}(20)-\mathrm{P}$	$117.3(2)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{P}$	$123.8(2)$		
$*$			

* Primed atoms related by symmetry: $\bar{x}, y, 0.5-z$.

Table 4. ${ }^{31} \mathrm{P}$ N.m.r. spectra (δ referred to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}, J$ in Hz ; solvent CDCl_{3})

Complex	$\delta /$ p.p.m.	${ }^{3} J(\mathbf{P}-\mathrm{P})$	${ }^{1} J(\mathrm{Pt}-\mathrm{P})$	${ }^{2} J(\mathrm{Pt}-\mathrm{P})$
(1)	31.5	165.3	2143.2	628.7
(2)	27.1	187.0	2060.0	726.6
(3)	25.7	197.2	2009.4	779.7
(4)	25.8	200.6	2005.2	774.0
(5)	28.1	153.8	2167.9	681.1
(6)	23.7	167.7	2087.1	764.4

(6) in CDCl_{3} show a similar pattern. The spectrum of complex (1) is shown in Figure 2 and data for complexes (1)-(6) are collected in Table 4.

As a consequence of the natural abundance of ${ }^{195} \mathrm{Pt}(33.7 \%)$, these binuclear complexes are a mixture of the following three isotopomers: (A) P-Pt-Pt-P (44\%), (B) $\mathrm{P}^{195}{ }^{19} \mathrm{Pt}-\mathrm{Pt}-\mathrm{P}(45 \%)$, and (C) $\mathrm{P}^{-195}{ }^{19} \mathrm{Pt}-{ }^{195} \mathrm{Pt}-\mathrm{P}(11 \%)$. The ${ }^{31} \mathrm{P}$ n.m.r. spectrum must be the superimposed spectra of the three isotopomers, and consist of a central singlet due to the A_{2} spin system (isotopomer A), eight signals (two doublets of doublets) due to the AA^{\prime} part of the $\mathrm{AA}^{\prime} \mathrm{X}$ spin system (isotopomer B) from which the parameters ${ }^{3} J(\mathrm{P}-\mathrm{P}),{ }^{2} J(\mathrm{Pt}-\mathrm{P})$, and ${ }^{1} J(\mathrm{Pt}-\mathrm{P})$ can be extracted; finally the isotopomer C is an $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ spin system and must present for the AA^{\prime} part ten signals, the two external more intense and separated by $N={ }^{1} J(\mathrm{Pt}-\mathrm{P})+{ }^{2} J(\mathrm{Pt}-\mathrm{P})$ being the only ones detected in our spectrum.

Reactivity:--We have studied the reactivity of complex (1) towards differing nucleophiles and electrophiles. When $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of complex (1) are treated at room temperature or at reflux with an excess of PPh_{3} or dppm, in order to displace the CO groups, no reaction is observed and the corresponding

Figure 2. ${ }^{31} \mathrm{P}-\{\mathbf{H}\}$ N.m.r. spectrum of complex (1) in CDCl_{3} (reference $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$)
starting materials are recovered. A similar behaviour has been reported by Goodfellow et al. ${ }^{7}$ for the anion $\left[\mathrm{Pt}_{2} \mathrm{X}_{4}(\mathrm{CO})_{2}\right]^{2-}$ which reacts with phosphine affording a variety of phosphine carbonyl derivatives but where none of the carbonyl groups has been substituted by phosphine. Complex (1) reacts at room temperature in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with p-tolyl isocyanide (molar ratio 1:2) giving a yellow solid (2) [equation (2)] where the CO

$$
\begin{align*}
& {\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]+2 \mathrm{CNC}_{6} \mathrm{H}_{4} \mathrm{Me}-p \longrightarrow} \\
& {\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mathrm{CNC}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]+2 \mathrm{CO}} \tag{2}
\end{align*}
$$

ligands have been displaced by $\mathrm{CNC}_{6} \mathrm{H}_{4} \mathrm{Me}-p$; however no insertion of the isocyanide into the $\mathrm{Pt}-\mathrm{Pt}$ bond is observed in contrast with the usual insertion of CNR observed in [CIPt $(\mu-$ dppm $\left.)_{2} \mathrm{PtX}\right]\left(\mathrm{X}=\mathrm{Cl}, \mathrm{I},{ }^{35}\right.$ or $\left.\mathrm{C}_{6} \mathrm{~F}_{5}{ }^{22}\right)$. The treatment of refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of complex (1) with SnCl_{2} leaves the starting material unchanged and no insertion of the SnCl_{2} into the $\mathrm{Pt}-\mathrm{Pt}$ bond has been noted. This contrasts with the behaviour of $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}\right]^{2-}$ which reacts with SnCl_{2} giving $\left[\left\{\mathrm{PtCl}_{2}(\mathrm{CO})\right\}_{2} \mathrm{SnCl}_{2}\right]^{2-.36}$

No oxidative-addition reactions have been observed by treating complex (1) with an excess of MeI in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; however it reacts with I_{2}. When complexes (1), (2), (5), and (6) are treated with I_{2} (molar ratio 1:1) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ the corresponding mononuclear platinum(II) derivatives [equation (3); $\mathrm{X}=\mathrm{F}$, $\mathrm{L}=\mathrm{CO}$ (7) or $\mathrm{CNC}_{6} \mathrm{H}_{4} \mathrm{Me}-p(\mathbf{8}), \mathrm{X}=\mathrm{Cl}, \mathrm{L}=\mathrm{CO}$ (9) or $\left.\mathrm{CNC}_{6} \mathrm{H}_{4} \mathrm{Me}-p(10)\right]$ are obtained.

$$
\begin{equation*}
\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2} \mathrm{~L}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]+\mathrm{I}_{2} \longrightarrow \underset{2\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right) \mathrm{IL}\left(\mathrm{PPh}_{3}\right)\right]}{ } \tag{3}
\end{equation*}
$$

Analytical results, molecular weights, and some i.r. information for complexes (7)-(10) are collected in Table 1. The pentafluorophenyl complexes (7) and (8) show an absorption due to the $\mathrm{C}_{6} \mathrm{~F}_{5}$ group (near $960 \mathrm{~cm}^{-1}$) at higher wavenumber than for the corresponding starting materials, in accordance with the increase of the formal oxidation state of the platinum. ${ }^{22}$ Similar shifts are observed for the absorptions due to $v(\mathrm{CO})$ or $v(\mathrm{CN})$. It is not possible from our spectroscopic data to assign unequivocally the structure of complexes (7)(10); fact three isomers are possible. The ${ }^{31} \mathrm{P}$ n.m.r. spectra of complexes (7) and (8) in CDCl_{3} show a very narrow singlet at 7.8 or 7.9 p.p.m. respectively with platinum satellites ${ }^{1} J(\mathrm{Pt}-\mathrm{P})=3236.2$ or 3524.6 Hz , respectively]. However, no couplings between ${ }^{31} \mathrm{P}$ and ${ }^{19} \mathrm{~F}$ nuclei are observed so that the isomer which contains $\mathrm{C}_{6} \mathrm{~F}_{5}$ and PPh_{3} in trans position can be ruled out.

Experimental

The C, H, and N analyses were carried out with a Perkin-Elmer 240B microanalyzer. Infrared spectra were recorded on a Perkin-Elmer 599 spectrophotometer using Nujol mulls between polyethylene plates or in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. Molecular weights were determined in CHCl_{3} solution on a Knauer apparatus. Phosphorus-31 n.m.r. spectra were recorded at room temperature on a Varian XL-200 instrument (200 MHz for ${ }^{1} \mathrm{H}$).
The complexes $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$, ${ }^{37}$ cis $-\left[\operatorname{Pt}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2}(\mathrm{CO})_{2}\right]$ $(\mathrm{X}=\mathrm{F}$ or Cl$),{ }^{38}$ and $c i s-\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CNR})_{2}\right]\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right.$, $\mathrm{C}_{6} \mathrm{H}_{11}$, or $\left.\mathrm{Bu}^{\mathrm{t}}\right)^{39}$ were prepared as described elsewhere. The complex cis- $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}\left(\mathrm{CNC}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)_{2}\right]$ was prepared in a similar way to cis- $\left[\operatorname{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CNR})_{2}\right]$ using cis$\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}(\mathrm{thf})_{2}\right]^{38}$ as starting material.
$\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2} \mathrm{~L}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathrm{X}=\mathrm{F}$ or $\mathrm{Cl} ; \mathrm{L}=\mathrm{CO}$ or CNR$)$. $\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (1). To a solution of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right](0.511 \mathrm{~g}, 0.683 \mathrm{mmol})$ in dry tetrahydrofuran $\left(15 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$, was added cis- $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})_{2}\right](0.400 \mathrm{~g}, 0.683 \mathrm{mmol})$ in thf ($15 \mathrm{~cm}^{3}$) under N_{2}. The resulting solution was stirred at room temperature for 2 h , refluxed for 1 h , and then evaporated to dryness. The residue was dissolved in benzene ($25 \mathrm{~cm}^{3}$) and the solution obtained was concentrated to $c a .2 \mathrm{~cm}^{3}$. By addition of diethyl ether ($c a .4 \mathrm{~cm}^{3}$) a white crystalline solid (1) precipitated. Complex (1) was washed with $2 \times 2 \mathrm{~cm}^{3}$ of cyclohexane-diethyl ether ($1: 1$); yield $0.570 \mathrm{~g}, 64 \%$.
Complexes (2) (yellow, 65%), (3) (white, 43%), (4) (white, 30%), (5) (white, 45%), and (6) (yellow, 50% yield) were prepared as for (1).

Reaction of $\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with $p-\mathrm{MeC}_{6}$ $\mathrm{H}_{4} \mathrm{NC}$.-To a solution of $\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](0.094 \mathrm{~g}$, 0.072 mimol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(15 \mathrm{~cm}^{3}\right), p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NC}(18.2 \mu \mathrm{l}, 0.144$ mmol) was added and the mixture was stirred at room temperature for 2 h . The solution was evaporated to $c a .2 \mathrm{~cm}^{3}$ and $\mathrm{E}_{2} \mathrm{O}\left(c a .10 \mathrm{~cm}^{3}\right)$ was added. The complex $\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}-\right.$ $\left.\left(p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NC}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ was obtained $(0.064 \mathrm{~g}, 60 \%$ yield $)$.

Reactions of $\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2} \mathrm{~L}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with $\mathrm{I}_{2}-\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}-\right.$ $\left.(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$. To a solution of $\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ $(0.094 \mathrm{~g}, 0.072 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added $\mathrm{I}_{2}(0.018 \mathrm{~g}$, $0.072 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$. After stirring at room temperature for 10 min , the colourless solution was evaporated to $2 \mathrm{~cm}^{3}$; addition of n-hexane caused precipitation of a white solid, (7) ($0.104 \mathrm{~g}, 92 \%$ yield).
Complexes (8)-(10) were prepared in a similar way. The precipitation was accomplished by adding diethyl ether [(8), white, 70%; (9), white, 80%)] or acetone [(10), pale yellow, 86% yield].

Molecular Structure Determination.-Crystal data. $\mathrm{C}_{50} \mathrm{H}_{30^{-}}$ $\mathrm{F}_{10} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Pt}_{2} \cdot 0.4 \mathrm{CHCl}_{3}, \quad M=1352.64$, monoclinic, $\quad a=$ 18.272(4), $b=16.006(3), c=17.787(5) \AA, \beta=101.046(19)^{\circ}$, $U=5105.9(20) \AA^{3}$ (from 25 centred reflections, $13<\theta<15^{\circ}$), space group $C 2 / c, Z=4, D_{c}=1.744 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=2580$, $\mu\left(\mathrm{Mo}-K_{\alpha}\right)=57.16 \mathrm{~cm}^{-1}$.
Data collection and processing. CAD4 diffractometer fitted with an ULT1 apparatus operating at $185^{\circ} \mathrm{K}$. Mo- K_{α} radiation ($\bar{\lambda}=0.71069 \AA$). $\omega-2 \theta$ scans in 96 steps, with ω scan width $0.8+0.35 \tan \theta . \theta_{\text {max. }}=25^{\circ} .4654$ Reflections measured $(\pm h,+k,+l), 4493$ unique, merging $R=0.0162$. Empirical absorption correction applied. ${ }^{40} 3449$ Data with $F \geqslant 6 \sigma(F)$ were used. No perceptible crystal decay or movement over $70 X$ ray hours.
Structure solution and refinement. Solved by Patterson synthesis (Pt) with further non- H atoms located by subsequent Fourier difference maps. Full-matrix least-squares refinement with all non-hydrogen atoms allowed anisotropic thermal
motion. Phenyl rings of PPh_{3} ligands were treated as rigid bodies and included in the refinement with idealised hexagonal symmetry (C-C $1.395 \AA$). All hydrogen atoms were included in calculated positions ($\mathrm{C}-\mathrm{H} 1.08 \AA$) and $U=0.076(9) \AA^{2}$. Near the end of the structure development a difference map showed a disordered molecule of CHCl_{3}; the three highest peaks were assigned to Cl atoms. The multiplicities and displacement parameters of the Cl atoms were refined alternately, yielding a model with a multiplicity of 0.2 and a group U for the Cl atoms of $0.162(6) \AA^{2}$. A difference map following convergence had maxima ca. $1.5 \mathrm{e} \AA^{-3}$ located either in the area of the disordered CHCl_{3} molecule or the central metal atom. Weighting scheme: $w^{-1}=\sigma^{2}(F)+0.002373 F^{2} . R$ and $R^{\prime} 0.0378$ and 0.0439 respectively for 276 variables. Computer programs CADABS, ${ }^{41}$ DIFABS, ${ }^{40}$ and SHELX 76. ${ }^{42}$

Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom co-ordinates and thermal parameters.

Acknowledgements

We thank the Dirección General de Investigación Científica y Técnica (Spain) for financial support (project PB 85-0128) and the Scientific Office of N.A.T.O. for a travel grant.

References

1 R. J. Puddephatt, Chem. Soc. Rev., 1983, 99 and refs. therein.
2 G. B. Jacobsen and B. L. Shaw, J. Chem. Soc., Chem. Commun., 1985, 692.

3 R. R. Guimerans and A. L. Balch, Inorg. Chim. Acta, 1983, 77, L177.
4 J. P. Farr, F. E. Wood, and A. L. Balch, Inorg. Chem., 1983, 22, 3387.
5 P. Dagnac, R. Turpin, and R. Poilblanc, J. Organomet. Chem., 1983, 253, 123.
6 H. Werner and A. Kuhn, Z. Naturforsch, Teil B, 1978, 33, 1360.
7 R. G. Goodfellow, I. R. Herbert, and A. G. Orpen, J. Chem. Soc., Chem. Commun., 1983, 1386.
8 R. Bender, P. Braunstein, A. Tiripicchio, and M. TiripicchioCamellini, J. Chem. Soc., Chem. Commun., 1984, 42.
9 J. Chatt and D. M. P. Mingos, J. Chem. Soc. A, 1970, 1243.
10 E. Ma, G. Semelhago, A. Walker, D. H. Farrar, and R. R. Gukathasan, J. Chem. Soc., Dalton Trans., 1985, 2595.
11 W. M. Hawling, A. Walker, and M. A. Woitzik, J. Chem. Soc., Chem. Commun., 1983, 11.
12 M. C. Baird and G. Wilkinson, J. Chem. Soc. A, 1967, 865.
13 A. C. Skapski and P. G. H. Troughton, J. Chem. Soc. A, 1969, 2772.
14 M. Ebner, H. Otto, and H. Werner, Angew. Chem., Int. Ed. Engl., 1985, 24, 518.
15 P. L. Goggin and R. J. Goodfellow, J. Chem. Soc., Dalton Trans., 1973, 2355.
16 N. M. Boag, P. L. Goggin, R. J. Goodfellow, and I. R. Herbert, J. Chem. Soc., Dalton Trans., 1983, 1101.

17 J. R. Bochm, D. J. Doonan, and A. L. Balch, J. Am. Chem. Soc., 1976, 98, 4845.
18 C. Couture, D. H. Farrar, D. S. Fisher, and R. R. Gukathasan, Organometallics, 1987, 6, 532.
19 E. Maslowsky, jun., 'Vibrational Spectra of Organometallic Compounds,' Wiley, New York, 1977, p. 437.
20 J. Casabó, J. M. Coronas, and J. Sales, Inorg. Chim. Acta, 1974, $11,5$.
21 R. Usón, J. Forniés, P. Espinet, F. Martínez, C. Fortuño, and B. Menjón, J. Organomet. Chem., 1983, 256, 365.

22 R. Usón, J. Forniés, P. Espinet, and C. Fortuño, J. Chem. Soc., Dalton Trans., 1986, 1849.
23 M. P. Brown, R. J. Puddephat, M. Rashidi, and K. R. Seddon, J. Chem. Soc., Dalton Trans., 1978, 1540.

24 M. P. Brown, R. J. Puddephat, M. Rashidi, Lj. Manojlovich-Muir, K. W. Muir, T. Solomun, and K. R. Seddon, Inorg. Chim. Acta, 1977, 23, L33.
25 A. Modinos and P. Woodward, J. Chem. Soc., Dalton Trans., 1975, 1516.

26 M. P. Brown, A. Yavari, Lj. Manojlovic-Muir, and K. W. Muir, J. Organomet. Chem., 1983, 256, C19.

27 S. I. Al-Resayes, P. B. Hitchcock, and J. F. Nixon, J. Organomet. Chem., 1984, 267, C13.

28 R. J. Bau and J. H. Espenson, J. Am. Chem. Soc., 1986, 108, 1962.
29 R. Usón, J. Forniés, M. Tomás, B. Menjón, and A. J. Welch, J. Organomet. Chem., 1986, 304, C24.
30 R. Usón, J. Forniés, M. Tomás, J. M. Casas, F. A. Cotton, and L. R. Falvello, J. Am. Chem. Soc., 1985, 107, 2556.
31 R. Usón, J. Forniés, B. Menjón, F. A. Cotton, L. R. Favello, and M. Tomás, Inorg. Chem., 1985, 24, 4651.
32 N. M. Rutherford, N. M. Olmstead, and A. L. Balch, Inorg. Chem., 1984, 23, 2833.
33 D. J. Doonan, A. L. Balch, S. Z. Goldberg, R. Eisenberg, and J. S. Miller, J. Am. Chem. Soc., 1975, 97, 1961.
34 S. Z. Goldberg and K. Eisenberg, Inorg. Chem., 1976, 15, 535.
35 K. R. Grundy and K. N. Robertson, Organometallics, 1983, 2, 1736.

36 R. J. Goodfellow and I. R. Herbert, Inorg. Chim. Acta, 1982, 65, L161.
37 J. Bernardus, B. Heyns, and F. G. A. Stone, J. Organomet. Chem., 1978, 160, 337.
38 R. Usón, J. Forniés, M. Tomás, and B. Menjón, Organometallics, 1986, 5, 1581
39 R. Usón, J. Forniés, P. Espinet, and E. Lalinde, Transition Met. Chem. (Weinheim, Ger.), 1984, 9, 277.
40 N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158.
41 R. O. Gould and D. E. Smith, University of Edinburgh, 1986.
42 G. M. Sheldrick, University of Cambridge, 1976.

Received 21st September 1988; Paper 8/03677B

[^0]: * Bis[carbonyl(pentafluorophenyl)(triphenylphosphine)platinum] ($P_{t-P} P_{t}$-chloroform (5/2).
 Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1989, Issue 1, pp. xvii-xx.

